rustlings
时间轴
2025-10-27
init
环境搭建
1 | # Installation |
variable
常量定义要加上类型!
variable6
1 | // TODO: Change the line below to fix the compiler error. |
move_semantics
vec 声明需要为 mut , 参数也得是 mut
1 | fn fill_vec(mut vec: Vec<i32>) -> Vec<i32> { |
struct
..语法
1 |
|
enum
enum 可以存放的 variants 类型
1 |
|
string
quiz2
1 | // This is a quiz for the following sections: |
hashmap
entry 方法非常好用
1 | // We're collecting different fruits to bake a delicious fruit cake. For this, |
entry().and_modify().or_insert()1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98// A list of scores (one per line) of a soccer match is given. Each line is of
// the form "<team_1_name>,<team_2_name>,<team_1_goals>,<team_2_goals>"
// Example: "England,France,4,2" (England scored 4 goals, France 2).
//
// You have to build a scores table containing the name of the team, the total
// number of goals the team scored, and the total number of goals the team
// conceded.
use std::collections::HashMap;
// A structure to store the goal details of a team.
struct TeamScores {
goals_scored: u8,
goals_conceded: u8,
}
fn build_scores_table(results: &str) -> HashMap<&str, TeamScores> {
// The name of the team is the key and its associated struct is the value.
let mut scores = HashMap::<&str, TeamScores>::new();
for line in results.lines() {
let mut split_iterator = line.split(',');
// NOTE: We use `unwrap` because we didn't deal with error handling yet.
let team_1_name = split_iterator.next().unwrap();
let team_2_name = split_iterator.next().unwrap();
let team_1_score: u8 = split_iterator.next().unwrap().parse().unwrap();
let team_2_score: u8 = split_iterator.next().unwrap().parse().unwrap();
// TODO: Populate the scores table with the extracted details.
// Keep in mind that goals scored by team 1 will be the number of goals
// conceded by team 2. Similarly, goals scored by team 2 will be the
// number of goals conceded by team 1.
scores
.entry(team_1_name)
.and_modify(|teamscore| {
teamscore.goals_scored += team_1_score;
teamscore.goals_conceded += team_2_score;
})
.or_insert(TeamScores {
goals_scored: team_1_score,
goals_conceded: team_2_score,
});
scores
.entry(team_2_name)
.and_modify(|teamscore| {
teamscore.goals_scored += team_2_score;
teamscore.goals_conceded += team_1_score;
})
.or_insert(TeamScores {
goals_scored: team_2_score,
goals_conceded: team_1_score,
});
}
scores
}
fn main() {
// You can optionally experiment here.
}
mod tests {
use super::*;
const RESULTS: &str = "England,France,4,2
France,Italy,3,1
Poland,Spain,2,0
Germany,England,2,1
England,Spain,1,0";
fn build_scores() {
let scores = build_scores_table(RESULTS);
assert!(["England", "France", "Germany", "Italy", "Poland", "Spain"]
.into_iter()
.all(|team_name| scores.contains_key(team_name)));
}
fn validate_team_score_1() {
let scores = build_scores_table(RESULTS);
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 6);
assert_eq!(team.goals_conceded, 4);
}
fn validate_team_score_2() {
let scores = build_scores_table(RESULTS);
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 3);
}
}
option
match取得所有权,可以用ref声明取得的是ref类型1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
struct Point {
x: i32,
y: i32,
}
fn main() {
let optional_point = Some(Point { x: 100, y: 200 });
// TODO: Fix the compiler error by adding something to this match statement.
match optional_point {
Some(ref p) => println!("Coordinates are {},{}", p.x, p.y),
_ => panic!("No match!"),
}
println!("{optional_point:?}"); // Don't change this line.
}
也可以直接match引用类型1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
struct Point {
x: i32,
y: i32,
}
fn main() {
let optional_point = Some(Point { x: 100, y: 200 });
// TODO: Fix the compiler error by adding something to this match statement.
match &optional_point {
Some(p) => println!("Coordinates are {},{}", p.x, p.y),
_ => panic!("No match!"),
}
println!("{optional_point:?}"); // Don't change this line.
}
error_handling
返回Box1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56// This exercise is an altered version of the `errors4` exercise. It uses some
// concepts that we won't get to until later in the course, like `Box` and the
// `From` trait. It's not important to understand them in detail right now, but
// you can read ahead if you like. For now, think of the `Box<dyn ???>` type as
// an "I want anything that does ???" type.
//
// In short, this particular use case for boxes is for when you want to own a
// value and you care only that it is a type which implements a particular
// trait. To do so, the `Box` is declared as of type `Box<dyn Trait>` where
// `Trait` is the trait the compiler looks for on any value used in that
// context. For this exercise, that context is the potential errors which
// can be returned in a `Result`.
use std::error::Error;
use std::fmt;
enum CreationError {
Negative,
Zero,
}
// This is required so that `CreationError` can implement `Error`.
impl fmt::Display for CreationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match *self {
CreationError::Negative => "number is negative",
CreationError::Zero => "number is zero",
};
f.write_str(description)
}
}
impl Error for CreationError {}
struct PositiveNonzeroInteger(u64);
impl PositiveNonzeroInteger {
fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
match value {
x if x < 0 => Err(CreationError::Negative),
0 => Err(CreationError::Zero),
x => Ok(PositiveNonzeroInteger(x as u64)),
}
}
}
// TODO: Add the correct return type `Result<(), Box<dyn ???>>`. What can we
// use to describe both errors? Is there a trait which both errors implement?
fn main() -> Result<(), Box<dyn Error>> {
let pretend_user_input = "42";
let x: i64 = pretend_user_input.parse()?;
println!("output={:?}", PositiveNonzeroInteger::new(x)?);
Ok(())
}
map_error
1 | // Using catch-all error types like `Box<dyn Error>` isn't recommended for |
trait
trait default implementation1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40trait Licensed {
// TODO: Add a default implementation for `licensing_info` so that
// implementors like the two structs below can share that default behavior
// without repeating the function.
// The default license information should be the string "Default license".
fn licensing_info(&self) -> String {
String::from("Default license")
}
}
struct SomeSoftware {
version_number: i32,
}
struct OtherSoftware {
version_number: String,
}
impl Licensed for SomeSoftware {} // Don't edit this line.
impl Licensed for OtherSoftware {} // Don't edit this line.
fn main() {
// You can optionally experiment here.
}
mod tests {
use super::*;
fn is_licensing_info_the_same() {
let licensing_info = "Default license";
let some_software = SomeSoftware { version_number: 1 };
let other_software = OtherSoftware {
version_number: "v2.0.0".to_string(),
};
assert_eq!(some_software.licensing_info(), licensing_info);
assert_eq!(other_software.licensing_info(), licensing_info);
}
}
iterator
iterator是惰性的,除非调用next或collect否则什么也没发生1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
enum DivisionError {
// Example: 42 / 0
DivideByZero,
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
IntegerOverflow,
// Example: 5 / 2 = 2.5
NotDivisible,
}
// TODO: Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
if b == 0 {
return Err(DivisionError::DivideByZero);
}
if a == i64::MIN && b == -1 {
return Err(DivisionError::IntegerOverflow);
}
if a % b == 0 {
return Ok(a / b);
} else {
return Err(DivisionError::NotDivisible);
}
}
// TODO: Add the correct return type and complete the function body.
// Desired output: `Ok([1, 11, 1426, 3])`
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.collect()
}
// TODO: Add the correct return type and complete the function body.
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.collect()
}
fn main() {
// You can optionally experiment here.
}
mod tests {
use super::*;
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
assert_eq!(divide(81, -1), Ok(-81));
assert_eq!(divide(i64::MIN, i64::MIN), Ok(1));
}
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
fn test_integer_overflow() {
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
}
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
fn test_result_with_list() {
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
}
fn test_list_of_results() {
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
}
计算阶乘
1 | fn factorial(num: u64) -> u64 { |
map可以把iter所要迭代的类型转换成要迭代的另一种类型
1 | // Let's define a simple model to track Rustlings' exercise progress. Progress |
smart pointers
std::borrow::Cow 智能指针1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69// This exercise explores the `Cow` (Clone-On-Write) smart pointer. It can
// enclose and provide immutable access to borrowed data and clone the data
// lazily when mutation or ownership is required. The type is designed to work
// with general borrowed data via the `Borrow` trait.
use std::borrow::Cow;
fn abs_all(input: &mut Cow<[i32]>) {
for ind in 0..input.len() {
let value = input[ind];
if value < 0 {
// Clones into a vector if not already owned.
input.to_mut()[ind] = -value;
}
}
}
fn main() {
// You can optionally experiment here.
}
mod tests {
use super::*;
fn reference_mutation() {
// Clone occurs because `input` needs to be mutated.
let vec = vec![-1, 0, 1];
let mut input = Cow::from(&vec);
abs_all(&mut input);
assert!(matches!(input, Cow::Owned(_)));
}
fn reference_no_mutation() {
// No clone occurs because `input` doesn't need to be mutated.
let vec = vec![0, 1, 2];
let mut input = Cow::from(&vec);
abs_all(&mut input);
// TODO: Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Borrowed(_)));
}
fn owned_no_mutation() {
// We can also pass `vec` without `&` so `Cow` owns it directly. In this
// case, no mutation occurs (all numbers are already absolute) and thus
// also no clone. But the result is still owned because it was never
// borrowed or mutated.
let vec = vec![0, 1, 2];
let mut input = Cow::from(vec);
abs_all(&mut input);
// TODO: Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Owned(_)));
}
fn owned_mutation() {
// Of course this is also the case if a mutation does occur (not all
// numbers are absolute). In this case, the call to `to_mut()` in the
// `abs_all` function returns a reference to the same data as before.
let vec = vec![-1, 0, 1];
let mut input = Cow::from(vec);
abs_all(&mut input);
// TODO: Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Owned(_)));
}
}
thread
收集线程返回值1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38// This program spawns multiple threads that each runs for at least 250ms, and
// each thread returns how much time it took to complete. The program should
// wait until all the spawned threads have finished and should collect their
// return values into a vector.
use std::{
thread,
time::{Duration, Instant},
};
fn main() {
let mut handles = Vec::new();
for i in 0..10 {
let handle = thread::spawn(move || {
let start = Instant::now();
thread::sleep(Duration::from_millis(250));
println!("Thread {i} done");
start.elapsed().as_millis()
});
handles.push(handle);
}
let mut results = Vec::new();
for handle in handles {
// TODO: Collect the results of all threads into the `results` vector.
// Use the `JoinHandle` struct which is returned by `thread::spawn`.
results.push(handle.join().unwrap());
}
if results.len() != 10 {
panic!("Oh no! Some thread isn't done yet!");
}
println!();
for (i, result) in results.into_iter().enumerate() {
println!("Thread {i} took {result}ms");
}
}
线程共享可变状态。在 Rust 中,RefCell 提供的是 单线程下的内部可变性,它不能跨线程安全使用。所以把 RefCell 包在 Arc 里,是 不安全的,会在编译时或者运行时出错。要在多线程中安全地共享和修改数据,需要用 Arc1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34// Building on the last exercise, we want all of the threads to complete their
// work. But this time, the spawned threads need to be in charge of updating a
// shared value: `JobStatus.jobs_done`
use std::{sync::Mutex, sync::Arc, thread, time::Duration};
struct JobStatus {
jobs_done: u32,
}
fn main() {
// TODO: `Arc` isn't enough if you want a **mutable** shared state.
let status = Arc::new(Mutex::new(JobStatus { jobs_done: 0 }));
let mut handles = Vec::new();
for _ in 0..10 {
let status_shared = Arc::clone(&status);
let handle = thread::spawn(move || {
thread::sleep(Duration::from_millis(250));
// TODO: You must take an action before you update a shared value.
status_shared.lock().unwrap().jobs_done += 1;
});
handles.push(handle);
}
// Waiting for all jobs to complete.
for handle in handles {
handle.join().unwrap();
}
// TODO: Print the value of `JobStatus.jobs_done`.
println!("Jobs done: {}", status.lock().unwrap().jobs_done);
}










