时间轴

2025-12-04

init


题目:

O((m+n)/2)解法,合并数组,不过还能优化(当一个数组已经为空时,可以直接计算中位数)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <vector>
using std::vector;

class Solution {
public:
double findMedianSortedArrays(vector<int> &nums1, vector<int> &nums2)
{
int m = nums1.size(), n = nums2.size();
int last_num;

int mi = 0, ni = 0;
int index = 0;
int total = m + n;
double res = 0;

while (mi < m || ni < n) {
if (mi < m && ni < n) {
if (nums1[mi] < nums2[ni]) {
last_num = nums1[mi++];

} else {
last_num = nums2[ni++];
}
} else if (mi >= m && ni < n) {
last_num = nums2[ni++];

} else if (mi < m && ni >= n) {
last_num = nums1[mi++];
}


if (total % 2 == 0) {
if(index == total / 2 - 1){
res += last_num;
}else if(index == total / 2){
res += last_num;
res = (double) res/2;
break;
}
} else {
if (index == total / 2) {
res = last_num;
break;
}
}
index++;
}
return res;
}
};

二分法:(没看懂 TODO)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <vector>
#include <algorithm>
#include <climits>
using std::vector;
using std::max;
using std::min;

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
// 确保 nums1 是较短的数组
if (nums1.size() > nums2.size())
return findMedianSortedArrays(nums2, nums1);

int m = nums1.size();
int n = nums2.size();
int left = 0, right = m;
int totalLeft = (m + n + 1) / 2; // 左半部分元素个数

while (left <= right) {
int i = left + (right - left) / 2; // nums1 分割位置
int j = totalLeft - i; // nums2 分割位置

int nums1LeftMax = (i == 0) ? INT_MIN : nums1[i - 1];
int nums1RightMin = (i == m) ? INT_MAX : nums1[i];
int nums2LeftMax = (j == 0) ? INT_MIN : nums2[j - 1];
int nums2RightMin = (j == n) ? INT_MAX : nums2[j];

if (nums1LeftMax <= nums2RightMin && nums2LeftMax <= nums1RightMin) {
// 找到正确分割
if ((m + n) % 2 == 1) {
return (double)max(nums1LeftMax, nums2LeftMax);
} else {
return (double)(max(nums1LeftMax, nums2LeftMax) +
min(nums1RightMin, nums2RightMin)) / 2;
}
} else if (nums1LeftMax > nums2RightMin) {
right = i - 1;
} else {
left = i + 1;
}
}

// 理论上不会到这里
return 0.0;
}
};