时间轴

2025-11-04

init


题目:

这题要注意,给出 a/b = val,那么b/a = 1/val, 即并非无向图。对于queries要考虑给出的变量不合法的情况。

邻接表+DFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <stack>
#include <utility>

using std::string;
using std::vector;
using std::unordered_map;
using std::unordered_set;
using std::stack;
using std::pair;

template <class T> struct Arc {
T val; // 边权
int vex; // 指向的节点索引
struct Arc<T>* next;
};

template <class T, class V> struct Node {
T val;
struct Arc<V>* first;
};

template <class T, class V> struct AdjGraph {
vector<Node<T, V>> vertices;
};

class Solution {
public:
vector<double> calcEquation(vector<vector<string>>& equations,
vector<double>& values,
vector<vector<string>>& queries)
{
AdjGraph<string, double> graph;
unordered_map<string, int> umap;
vector<Arc<double>*> arcs;
vector<double> res;

int i, n = equations.size();
string dividend, divisor;

// ===== 构建图 =====
for (i = 0; i < n; i++) {
dividend = equations[i][0];
divisor = equations[i][1];

if (!umap.count(dividend)) {
Node<string, double> node;
node.val = dividend;
node.first = nullptr;
graph.vertices.push_back(node);
umap[dividend] = graph.vertices.size() - 1;
}
if (!umap.count(divisor)) {
Node<string, double> node;
node.val = divisor;
node.first = nullptr;
graph.vertices.push_back(node);
umap[divisor] = graph.vertices.size() - 1;
}

// 添加两条边:正向 + 反向
Arc<double>* arc1 = new Arc<double>();
arc1->val = values[i];
arc1->vex = umap[divisor];
arc1->next = graph.vertices[umap[dividend]].first;
graph.vertices[umap[dividend]].first = arc1;
arcs.push_back(arc1);

Arc<double>* arc2 = new Arc<double>();
arc2->val = 1.0 / values[i];
arc2->vex = umap[dividend];
arc2->next = graph.vertices[umap[divisor]].first;
graph.vertices[umap[divisor]].first = arc2;
arcs.push_back(arc2);
}

// ===== 查询阶段 =====
n = queries.size();
string start, target;
int start_idx, target_idx;
double ans;


for (i = 0; i < n; i++) {
start = queries[i][0];
target = queries[i][1];

if (!umap.count(start) || !umap.count(target)) {
res.push_back(-1.0);
continue;
}

start_idx = umap[start];
target_idx = umap[target];

if (start_idx == target_idx) {
res.push_back(1.0);
continue;
}
// index, prod
// 节点索引,当前累乘

stack<pair<int, double>> st;
unordered_set<int> visited;

st.push({start_idx, 1.0});

ans = -1.0;
// 深度优先遍历
while (!st.empty()) {
auto [curr, prod] = st.top();
st.pop();

if (curr == target_idx) {
ans = prod;
break;
}

if (visited.count(curr)){
continue;
}

visited.insert(curr);

for (Arc<double>* p = graph.vertices[curr].first; p!=nullptr; p = p->next) {
if (!visited.count(p->vex)){
st.push({p->vex, prod * p->val});
}
}
}
res.push_back(ans);
}

for (auto p : arcs)
delete p;

return res;
}
};

unordered_map>

用 unordered_map> 构造图最为简便。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include <unordered_map>
#include <vector>
#include <string>
#include <stack>
#include <unordered_set>
using namespace std;

class Solution {
public:
vector<double> calcEquation(vector<vector<string>>& equations,
vector<double>& values,
vector<vector<string>>& queries)
{
// ===== 构建图 =====
unordered_map<string, vector<pair<string, double>>> graph;

for (int i = 0; i < equations.size(); i++) {
string a = equations[i][0];
string b = equations[i][1];
double val = values[i];

graph[a].push_back({b, val});
graph[b].push_back({a, 1.0 / val});
}

// ===== 查询阶段 =====
vector<double> res;
for (auto& q : queries) {
string start = q[0], target = q[1];
if (!graph.count(start) || !graph.count(target)) {
res.push_back(-1.0);
continue;
}

if (start == target) {
res.push_back(1.0);
continue;
}

// DFS 栈:{当前节点, 当前乘积}
stack<pair<string, double>> st;
unordered_set<string> visited;

st.push({start, 1.0});
double ans = -1.0;

while (!st.empty()) {
auto [node, val] = st.top();
st.pop();

if (node == target) {
ans = val;
break;
}

if (visited.count(node))
continue;

visited.insert(node);
for (auto& [next, weight] : graph[node]) {
if (!visited.count(next)) {
st.push({next, val * weight});
}
}
}
res.push_back(ans);
}

return res;
}
};