题目:
dp[i][j]暴力更新状态
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
| #include <vector> using std::vector;
class Solution { public: int maximalSquare(vector<vector<char> > &matrix) { int i, j, k, m = matrix.size(), n = matrix[0].size(); vector<vector<int> > dp(m, vector<int>(n, 0)); int max_len = 0; for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { if (matrix[i][j] == '1') { dp[i][j] = 1; max_len = 1; } } }
bool only1; for (i = 1; i < m; i++) { for (j = 1; j < n; j++) { if (dp[i][j] == 1 && dp[i - 1][j - 1] != 0) { only1 = true; for (k = 1; k <= dp[i - 1][j - 1]; k++) { if (dp[i][j - k] == 0) { only1 = false; break; } if (dp[i - k][j] == 0) { only1 = false; break; } } if (only1) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = (k - 1) + 1; } max_len = std::max(dp[i][j], max_len); } } } return max_len * max_len; } };
|
实际 dp 更新方程:
when dp[i][j] == 1:
$$
dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
| #include <vector> #include <algorithm> using std::vector;
class Solution { public: int maximalSquare(vector<vector<char> > &matrix) { int i, j, m = matrix.size(), n = matrix[0].size(); vector<vector<int> > dp(m, vector<int>(n, 0)); int max_len = 0; for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { if (matrix[i][j] == '1') { dp[i][j] = 1; max_len = 1; } } }
bool only1; for (i = 1; i < m; i++) { for (j = 1; j < n; j++) { if (dp[i][j] == 1) { dp[i][j] = std::min({ dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] }) + 1; max_len = std::max(dp[i][j], max_len); } } } return max_len * max_len; } };
|