时间轴

2025-12-15

init


题目:

dp[i][j]暴力更新状态

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <vector>
using std::vector;

class Solution {
public:
int maximalSquare(vector<vector<char> > &matrix)
{
int i, j, k, m = matrix.size(), n = matrix[0].size();
// dp[i][j]表示以matrix[i][j]为右下角的全1正方形大小
vector<vector<int> > dp(m, vector<int>(n, 0));
int max_len = 0;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = 1;
max_len = 1;
}
}
}

bool only1;
for (i = 1; i < m; i++) {
for (j = 1; j < n; j++) {
if (dp[i][j] == 1 && dp[i - 1][j - 1] != 0) {
// dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
only1 = true;
for (k = 1; k <= dp[i - 1][j - 1]; k++) { //boundary
if (dp[i][j - k] == 0) {
only1 = false;
break;
}
if (dp[i - k][j] == 0) {
only1 = false;
break;
}
}
// k-1
if (only1) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = (k - 1) + 1;
}
max_len = std::max(dp[i][j], max_len);
}
}
}
return max_len * max_len;
}
};

实际 dp 更新方程:
when dp[i][j] == 1:

$$
dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
$$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <vector>
#include <algorithm>
using std::vector;

class Solution {
public:
int maximalSquare(vector<vector<char> > &matrix)
{
int i, j, m = matrix.size(), n = matrix[0].size();
// dp[i][j]表示以matrix[i][j]为右下角的全1正方形大小
vector<vector<int> > dp(m, vector<int>(n, 0));
int max_len = 0;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
dp[i][j] = 1;
max_len = 1;
}
}
}

bool only1;
for (i = 1; i < m; i++) {
for (j = 1; j < n; j++) {
if (dp[i][j] == 1) {
dp[i][j] = std::min({ dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] }) + 1;
max_len = std::max(dp[i][j], max_len);
}
}
}
return max_len * max_len;
}
};